精英家教网 > 高中数学 > 题目详情
已知{an}是公差不为零的等差数列,如果sn是{an}的前n项的和,那么
lim
n→∞
nan
sn
等于______.
设an=a1+(n-1)d,sn=na1+
n(n-1)
2
d,代入得
lim
n→∞
nan
sn
=
lim
n→∞
na1+n(n-1)d
na1+
n(n-1)
2
d
=
lim
n→∞
a1
n-1
+d
a1
n-1
+
d
2
=2
故答案为2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{2an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,{bn}等比数列,满足b1=a12,b2=a22,b3=a32
(I)求数列{bn}公比q的值;
(II)若a2=-1且a1<a2,求数列{an}公差的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)令bn=
1
(an+1)2-1
(n∈N*)
,数列{bn}的前n项和Tn,证明:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{
1anan+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=b1=1,a4=7,a5=b2,且存在常数α,β使得对每一个正整数n都有an=logαbn+β,则α+β=
4
4

查看答案和解析>>

同步练习册答案