精英家教网 > 高中数学 > 题目详情

如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为_____________.

解析试题分析:由题意可知直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以直线EF与正方体的六个面所在的平面相交的平面个数为4.
考点:1、平面的基本性质;2、直线与平面平行的判定与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

四棱锥P-ABCD的底面ABCD是边长为2的正方形,PA⊥底面ABCDPA =4,则PC与底面ABCD所成角的正切值为     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则

(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH是正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正方体中,过对角线的一个平面交棱于E,交棱于F,则:①四边形一定是平行四边形;②四边形有可能是正方形;③四边形有可能是菱形;④四边形有可能垂直于平面.
其中所有正确结论的序号是         .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正三角形的边长为2,将它沿高翻折,使点与点间的距离为1,此时二面角大小为        .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正三棱锥P ­ABC中,D,E分别是AB,BC的中点,下列结论:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE,其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知α,β是两个不同的平面,下列四个条件:
①存在一条直线a,a⊥α,a⊥β;
②存在一个平面γ,γ⊥α,γ⊥β;
③存在两条平行直线a,b,a?α,b?β,a∥β,b∥α;
④存在两条异面直线a,b,a?α,b?β,a∥β,b∥α.
其中是平面α∥平面β的充分条件的为________(填上所有符号要求的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在正方体ABCDA1B1C1D1中,AB=2,点EAD的中点,点FCD上.若EF∥平面AB1C,则线段EF的长度等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;②l⊥α;③β⊥γ;④α⊥β.
由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上).

查看答案和解析>>

同步练习册答案