精英家教网 > 高中数学 > 题目详情
如图,已知直四棱柱ABCD﹣A1B1C1D1,底面ABCD为菱形,∠DAB=120°,E为线段CC1的中点,F为线段BD1的中点.
(Ⅰ)求证:EF∥平面ABCD;
(Ⅱ)当的比值为多少时,DF⊥平面D1EB,并说明理由.
(Ⅰ)证明:连接AC1,由题意可知点F为AC1的中点.
∵因为点E为CC1的中点,
∴在△ACC1中,EF∥AC.
又∵EF面ABCD,AC面ABCD,
∴EF∥面ABCD.
(Ⅱ)解:当 时,DF⊥平面D1EB.  
∵四边形ABCD为菱形,且∠DAB=120°,
∴ 
∵四棱柱ABCD﹣A1B1C1D1为直四棱柱,
∴四边形DBB1D1为矩形.
又 ,∴BD=DD1
∴四边形DBB1D1为正方形,
∴DF⊥D1B
在直四棱柱ABCD﹣A1B1C1D1中,DD1⊥底面ABCD,AC面ABCD,
∴AC⊥DD1
∵四边形ABCD为菱形,AC⊥BD,BD∩DD1=D,
∴AC⊥面DBB1D1
∵DF面DBB1D1
∴AC⊥DF,
又EF∥AC,
∴EF⊥DF.
∵EF面D1EB,D1B面D1EB,EF∩D1B=F,
∴DF⊥平面D1EB.
  
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直四棱柱ABCD-A1B1C1D1的底面边长和侧棱长均为1,且满足∠BAD=60°,O1为A1C1的中点.
(1)求证:BD⊥A1C;
(2)求证:AO1∥平面C1BD;
(3)设BB1的中点为M,过A,C1和M作一截面,求所得截面面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为4的菱形,∠BAD=60°,AA1=6,P是棱AA1的中点.求:
(1)截面PBD分这个棱柱所得的两个几何体的体积;
(2)三棱锥A-PBD的高.

查看答案和解析>>

科目:高中数学 来源:2012年高考数学模拟系列试卷1(文科)(解析版) 题型:解答题

如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

查看答案和解析>>

科目:高中数学 来源:2011年浙江省高考数学模拟试卷1(文科)(解析版) 题型:解答题

如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

查看答案和解析>>

同步练习册答案