精英家教网 > 高中数学 > 题目详情
8.集合M={(x,y)|y=$\sqrt{4-{x}^{2}}$},N={(x,y)|x-y+m=0},若M∩N的子集恰有4个,则m的取值范围是(  )
A.(-2$\sqrt{2}$,2$\sqrt{2}$)B.[-2,2$\sqrt{2}$)C.(-2$\sqrt{2}$,-2]D.[2,2$\sqrt{2}$)

分析 根据题意,分析可得集合M表示的图形为半圆,集合N表示的图形为直线,M∩N的子集恰有4个,可知M∩N的元素只有2个,即直线与半圆相交.利用数形结合即可得出答案.

解答 解:根据题意,对于集合M,y=$\sqrt{4-{x}^{2}}$,变形可得x2+y2=4,(y≥0),为圆的上半部分,
N={(x,y)|x-y+m=0},为直线x-y+m=0上的点,
若M∩N的子集恰有4个,即集合M∩N中有两个元素,则直线与半圆有2个交点,
分析可得:2≤m<2$\sqrt{2}$,
故选:D.

点评 本题考查直线与圆的位置关系,涉及集合子集的个数,关键是分析集合M、N表示的几何图形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,边a,b,c分别是角A,B,C的对边,cosA=$\frac{4}{5}$,b=2,△ABC的面积S=3,则边a的值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为BC的中点,且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,则λ+μ=(  )
A.3B.2C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知tanα=-$\frac{2}{3}$,tan(α+β)=$\frac{1}{2}$,那么tanβ=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.作图并求值域,单调区间:y=|x-2|-|x+2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,则ω的取值范围是($\frac{3}{4}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线mx-y-2=0与3x-(2+m)y-1=0平行,则实数m为(  )
A.1或-3B.-1或3C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)定义域为R,命题:p:f(x)为奇函数,q:${∫}_{-1}^{1}$f(x)dx=0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=2px (p>0)上的一点M到定点A($\frac{7}{2}$,4)和焦点F的距离之和的最小值等于5,则P=3或1.

查看答案和解析>>

同步练习册答案