精英家教网 > 高中数学 > 题目详情
(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;
(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
解:(1){an}要唯一,∴当公比时,


∵a>0,
最少有一个根(有两个根时,保证仅有一个正根),
,此时满足条件的a有无数多个,不符合。
∴当公比时,等比数列{an}的首项为a,其余各项均为常数0,唯一,
此时由,可推得3a-1=0,符合;
综上:
(2)假设存在这样的等比数列,公比分别为q1,q2
则由等差数列的性质可得:
整理得:
要使该式成立,则
此时数列公差为0与题意不符,
所以不存在这样的等比数列
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=
2007050
2007050
(用数字作答).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=______(用数字作答).

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南京市高淳县湖滨高级中学高二(上)9月月考数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州市高一(下)期末数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高一(下)期末数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

同步练习册答案