精英家教网 > 高中数学 > 题目详情
20.某种游戏中,一只“电子狗”从棱长为1的正方体ABCD-A1B1C1D1的顶点A出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,它的爬行的路线是AB→BB1→B1C1…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是正整数);则该“电子狗”爬完2014段后与起始点A的距离是$\sqrt{2}$.

分析 先根据题意,通过前几步爬行观察,得到每爬6步回到起点,周期为6.再计算该“电子狗”爬完2014段后,达哪个点顶点处,利用正方体的性质和棱长为1加以计算,即可得到此时它们的距离.

解答 解:由题意,“电子狗”爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,即过6段后又回到起点,可以看作以6为周期,
∵2014=335×6+4,
∴“电子狗”爬完2014段,后到达第四段的终点D1处,此时距离为|AD1|=$\sqrt{2}$,
故答案为:$\sqrt{2}$

点评 本题考查空间想象能力、异面直线的定义等相关知识,属于创新题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x2-2x-8|.
(Ⅰ)画出函数f(x)的图象.
(Ⅱ)求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*,数列{an}满足$\frac{1}{{{a_{n+1}}}}={f^′}({\frac{1}{a_n}})$,且a1=4.
(1)求数列{an}的通项公式;
(2)记${b_n}=\sqrt{{a_n}{a_{n+1}}}$,求数列{bn}的前n项和Tn
(3)并求出Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果命题“坐标满足方程F(x,y)=0的点都在曲线C上”是不正确的,那么下列命题正确的是(  )
A.坐标满足方程F(x,y)=0的点都不在曲线C上
B.曲线C上的点的坐标不都满足方程F(x,y)=0
C.坐标满足方程F(x,y)=0的点,有些在曲线C上,有些不在曲线C上
D.至少有一个不在曲线C上的点,它的坐标满足F(x,y)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知$a=4,c=2\sqrt{2}$,$cosA=-\frac{{\sqrt{2}}}{4}$.
(1)求sinC和b的值;
(2)求$sin(2A-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.将一枚质地均匀的硬币连掷三次.
(1)出现“2个正面朝上,1个反面朝上”的概率是多少?
(2)出现“1个正面朝上,2个反面朝上”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合M={x|(x+2)(x-5)>0},集合N={x|(x-a)(x-2a+1)<0},若M∩N=N,则实数a的取值范围是(-∞,-2]∪{1}∪[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“若随机事件A,B相互独立,则P(A∩B)=P(A)P(B)”的逆否命题是(  )
A.“若随机事件A,B相互不独立,则P(A∩B)≠P(A)P(B)”
B.“若随机事件A,B相互独立,则P(A∩B)≠P(A)P(B)”
C.“若P(A∩B)=P(A)P(B),则随机事件A,B相互不独立”
D.“若P(A∩B)≠P(A)P(B),则随机事件A,B相互不独立”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.曲线y=cosx(0≤x≤$\frac{3π}{2}$与x轴以及直线x=$\frac{3π}{2}$所围成的面积为3.

查看答案和解析>>

同步练习册答案