精英家教网 > 高中数学 > 题目详情
11、已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,
g′(x)>0,则当x<0时有(  )
分析:由已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),知f(x)为奇函数,g(x)为偶函数,又由当x>0时,f′(x)>0,g′(x)>0,可得在区间(0,+∞)上f(x),g(x)均为增函数,然后结合奇函数、偶函数的性质不难得到答案.
解答:解:由f(-x)=-f(x),g(-x)=g(x),
知f(x)为奇函数,g(x)为偶函数.
又x>0时,f′(x)>0,g′(x)>0,
知在区间(0,+∞)上f(x),g(x)均为增函数
由奇、偶函数的性质知,
在区间(-∞,0)上f(x)为增函数,g(x)为减函数
则当x<0时,f′(x)>0,g′(x)<0.
故选B
点评:奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反,这是函数奇偶性与函数单调性综合问题的一个最关键的粘合点,故要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年辽宁省朝阳市朝阳县柳城高级中学高二(下)期末数学试卷(理科)(解析版) 题型:选择题

已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河北省保定市定兴中学高二(上)12月月考数学试卷(文科)(解析版) 题型:选择题

已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源:2007年福建省高考数学试卷(理科)(解析版) 题型:选择题

已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:集合与函数(解析版) 题型:选择题

已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

同步练习册答案