精英家教网 > 高中数学 > 题目详情
已知a,b,c为△ABC的三个内角A,B,C的对边,向量
m
=(
3
,-1),
n
=(cosA,sinA).若
m
n
,且acosB+bcosA=csinC,则角B=
 
分析:由向量数量积的意义,有
m
n
?
3
cosA-sinA=0
,进而可得A,再根据正弦定理,可得sinAcosB+sinBcosA=sinC  sinC,结合和差公式的正弦形式,化简可得sinC=sin2C,可得C,由A、C的大小,可得答案.
解答:解:根据题意,
m
n
?
3
cosA-sinA=0
?A=
π
3

由正弦定理可得,sinAcosB+sinBcosA=sinCsinC,
又由sinAcosB+sinBcosA=sin(A+B)=sinC,
化简可得,sinC=sin2C,
则C=
π
2

B=
π
6

故答案为
π
6
点评:本题考查向量数量积的应用,判断向量的垂直,解题时,注意向量的正确表示方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c为直线,α、β、γ为平面,则下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;
(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C为△ABC的三内角,且其对分别为a、b、c,若A=120°,a=2
3
,b+c=4,则△ABC的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C为△ABC的三个内角,设f(A,B)=sin22A+cos22B-
3
sin2A-cos2B+2

(1)当f(A,B)取得最小值时,求C的大小;
(2)当C=
π
2
时,记h(A)=f(A,B),试求h(A)的表达式及定义域;
(3)在(2)的条件下,是否存在向量
p
,使得函数h(A)的图象按向量
p
平移后得到函数g(A)=2cos2A的图象?若存在,求出向量
p
的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为三条不同的直线,且a?平面M,b?平面N,M∩N=c,则下面四个命题中正确的是(  )

查看答案和解析>>

同步练习册答案