精英家教网 > 高中数学 > 题目详情

已知函数有极小值
(Ⅰ)求实数的值;
(Ⅱ)若,且对任意恒成立,求的最大值为.

(Ⅰ); (Ⅱ).

解析试题分析:(Ⅰ)利用导数等于零的点为极值点求出,注意复合函数求导方法,防止出错;
(Ⅱ)当时,令,然后求得最小值,只有小于的最小值就满足题意,然后根据求出最大值.
试题解析:(Ⅰ),令,令
的极小值为,得.              6分
(Ⅱ)当时,令
,故上是增函数
由于存在,使得
,知为减函数;,知为增函数.
,又所以     12分
考点:1.利用导数求函数单调区间;2.利用导数求函数最值.3.复合函数求导.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分共12分)已知函数,曲线在点处切线方程为
(Ⅰ)求的值;
(Ⅱ)讨论的单调性,并求的极大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值.
① 若,求函数上的最小值;
② 求证:对任意,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 ().
(1)当时,判断在定义域上的单调性;
(2)若上的最小值为,求的值;
(3)若上恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为(0,).
(Ⅰ)求函数上的最小值;
(Ⅱ)设函数,如果,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)若,讨论的单调性;
(Ⅱ)时,有极值,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.
(3) 求证:,(其中是自然对数的底).

查看答案和解析>>

同步练习册答案