精英家教网 > 高中数学 > 题目详情
已知偶函数y=f(x)(x∈R)在区间[0,3]上单调递增,在区间[3,+∞)上单调递减,且满足f(-4)=f(1)=0,则不等式x3f(x)<0的解集是(  )
分析:作出函数f(x)的草图,x3f(x)<0?
x3>0
f(x)<0
x3<0
f(x)>0
,根据图象即可解得不等式组的解集.
解答:解:根据题意作出函数y=f(x)的草图:

由图象知,x3f(x)<0?
x3>0
f(x)<0
x3<0
f(x)>0
?
x>0
x<-4或-1<x<1或x>4
x<0
-4<x<-1或1<x<4

解得0<x<1或x>4或-4<x<-1,
故选D.
点评:本题考查函数的奇偶性、单调性,考查抽象不等式的求解,考查数形结合思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

35、已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是
(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形的两内角,则(  )
A、f(sinα)>f(cosβ)B、f(sinα)<f(cosβ)C、f(sinα)>f(sinβ)D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)满足条件f(x+1)=f(x-1),且当x∈[-1,0]时,f(x)=3x+
4
9
,则f(log
1
3
5)
的值等于
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)在区间(-∞,0]上是增函数,下列不等式一定成立的是(  )

查看答案和解析>>

同步练习册答案