精英家教网 > 高中数学 > 题目详情

已知直线

(1)求直线与直线之间的距离;

(2)求关于点A(-1,0)的对称直线的方程。

解析:(1)直线方程为,由公式得,距离 

(2)由条件直线设为:,则点A 到的距离相等,

,所以(舍),

所以直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足
CE
CA
=
CF
CB
,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足
CE
CA
=
CF
CB
=k
,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的大小;
(Ⅲ)若异面直线AB与DE所成角的余弦值为
2
4
,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)离心率为
3
2
,且过P(
6
2
2
).
(1)求椭圆E的方程;
(2)已知直线l过点M(-
1
2
,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若
AB
=λ
AN
BD
BN
,且λ+μ=
5
2
,求抛物线C的标准方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮南市高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2008年北京市丰台区高考数学一模试卷(文科)(解析版) 题型:解答题

已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的平面角的正切值.

查看答案和解析>>

同步练习册答案