精英家教网 > 高中数学 > 题目详情

用单调性定义证明:函数数学公式在区间(0,1)内单调递减.

证明:任取区间(0,1)内两个实数x1,x2,且x1<x2
则x1+x2<2<,即x1+x2-<0,x1-x2<0
则f(x1)-f(x2)=()-()=(x1+x2-)(x1-x2)>0
即f(x1)>f(x2
故函数在区间(0,1)内单调递减
分析:任取区间(0,1)内两个实数x1,x2,且x1<x2,进而根据函数,作差f(x1)-f(x2),分解因式后,根据实数的性质,判断f(x1)-f(x2)的符号,进而根据函数单调性的定义,即可得到结论.
点评:本题考查的知识点是函数单调性的判断与证明,其中对作差后的式子,进行因式分解,是利用定义法(作差法)证明函数单调性的难点.
练习册系列答案
相关习题

科目:高中数学 来源:2014届云南省高一上学期期中数学试卷(解析版) 题型:解答题

(本小题满分12分)已知函数是定义在上的奇函数,且

(1)确定函数的解析式;

(2)用定义证明上是增函数;

(3)解不等式.

【解析】第一问利用函数的奇函数性质可知f(0)=0

结合条件,解得函数解析式

第二问中,利用函数单调性的定义,作差变形,定号,证明。

第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。

 

查看答案和解析>>

同步练习册答案