精英家教网 > 高中数学 > 题目详情
已知a是实数,函数f(x)=x2(x-a)
(1)如果f′(1)=3,求a的值;
(2)在(1)的条件下,求曲线y=f(x)在点(1,f(1))处的切线方程.
分析:(1)求函数的导数,利用f′(1)=3,建立方程解a即可.
(2)利用导数的几何意义求f'(1),然后求切线方程即可.
解答:解:(1)∵f(x)=x2(x-a)=x3-ax2
∴f'(x)=3x2-2ax.
∵f′(1)=3,
∴f′(1)=3-2a=3,解得a=0.
(2)由(1)知a=0,
∴f(x)=x3,f'(x)=3x2
∴f(1)=1,f'(1)=3,
∴切线方程为y-1=3(x-1),即y=3x-2.
点评:本题主要考查导数的几何意义,以及导数的基本运算,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=
43
ax3+x2-(a+5)x
,如果函数y=f(x)在区间[-1,1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范围.
(2)若函数y=f(x)在区间[-1,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)已知a是实数,函数f(x)=x3-(a+
32
)x2
+2ax+1
(Ⅰ)若f′(2)=4,求a的值及曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求f(x)在区间[1,4]上的最大值.

查看答案和解析>>

同步练习册答案