精英家教网 > 高中数学 > 题目详情
若存在m∈[1,3],使得不等式mx2+(m-3)x-3>0恒成立,则实数x的范围是
x<-1或x>3
x<-1或x>3
分析:令f(m)=(x2+x)m-3x-3,由题意得f(1)>0 且f(3)>0,由此求出实数x的取值范围.
解答:解:令f(m)=mx2+(m-3)x-3=(x2+x)m-3x-3,是关于a的一次函数,由题意得
f(1)=(x2+x)-3x-3>0,且 f(3)=(x2+x)•3-3x-2>0.
即x2 -2x-3>0①,且3x2-2>0 ②. 
解①可得 x<-1,或 x>3. 解②可得 x<-
6
3
或x>
6
3

把①②的解集取交集可得 x<-1,或x>3.
故答案为:x<-1,或x>3
点评:本题考查函数的恒成立问题,以及函数在闭区间上的值域的求法,一元二次不等式的解法,得到x2 -2x-3>0且3x2-2>0是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设复数z=x+(4-x)i(x∈R).
(Ⅰ)若复数
z1-i
为纯虚数,求x的值;
(Ⅱ)若存在x∈[-1,3],使得|z|2-2m≥0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在m∈[1,3],使得不等式mx2+(m-3)x-3>0恒成立,则实数x的范围是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁市高二(上)期末数学试卷(解析版) 题型:解答题

设复数z=x+(4-x)i(x∈R).
(Ⅰ)若复数为纯虚数,求x的值;
(Ⅱ)若存在x∈[-1,3],使得|z|2-2m≥0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省朝阳市凌源实验中学高二(上)期中数学试卷(解析版) 题型:填空题

若存在m∈[1,3],使得不等式mx2+(m-3)x-3>0恒成立,则实数x的范围是   

查看答案和解析>>

同步练习册答案