【题目】某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):
学生 | 高一 | 高二 | 高三 |
满意 | 500 | 600 | 900 |
不满意 | 300 | 200 | 300 |
(1)求从所有参与调查的人中任选1人是高三学生的概率;
(2)从参与调查的高三学生中,用分层抽样的方法抽取4人,在这4人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点
和
,圆
是以
为圆心,半径为
的圆,点
是圆
上任意一点,线段
的垂直平分线
和半径
所在的直线交于点
.
(1)当点
在圆上运动时,求点
的轨迹方程
;
(2)已知
,
是曲线
上的两点,若曲线
上存在点
,满足
(
为坐标原点),求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,四个点
,
,
,
中有3个点在椭圆
:
上.
(1)求椭圆
的标准方程;
(2)过原点的直线与椭圆
交于
,
两点(
,
不是椭圆
的顶点),点
在椭圆
上,且
,直线
与
轴、
轴分别交于
、
两点,设直线
,
的斜率分别为
,
,证明:存在常数
使得
,并求出
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正四棱锥
中,O为顶点S在底面ABCD内的投影,P为侧棱SD的中点,且
.
![]()
(1)证明:
平面PAC.
(2)求直线BC与平面PAC的所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,下面的表格内的数值填写规则如下:先将第1行的所有空格填上1;再把一个首项为1,公比为
的数列
依次填入第一列的空格内;其它空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写
第1列 | 第2列 | 第3列 | … | 第 | |
第1行 | 1 | 1 | 1 | … | 1 |
第2行 |
| ||||
第3行 |
| ||||
… | … | ||||
第 |
|
(1)设第2行的数依次为
,试用
表示
的值;
(2)设第3列的数依次为
,求证:对于任意非零实数
,
;
(3)能否找到
的值,使得(2)中的数列
的前
项
成为等比数列?若能找到,
的值有多少个?若不能找到,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球运动的真谛不仅在于竞技,更在于增强人民体质,培养人们爱国主义、集体主义、顽强拼搏的精神.足球是人类交流的另类“语言”,而其他竞技方式,无论从深度到广度,从速度到力度,都难以与足球比肩,就交流与表达而言,足球是人类最能展露自己天性的运动.
(1)已知某国每年注册足球运动员的人数
(万人)与该国年度国际足联排名
线性相关,统计数据如下表:
![]()
求变量
与
的线性回归方程
,并预测该国年度国际足联排名为第
时注册足球运动员的人数;(参考公式:
)
(参考数据:
;
)
(2)从该国中学生中选出
名男生进行颠球挑战,若能一次性连续颠球超过
个就可获得一个奖励足球,每人只能挑战一次.已知这
名男生每人能够一次性连续颠球超过
个的概率均为
,且相互独立.求这
名男生获得奖励足球个数
的数学期望
及获得奖励足球超过
个的概率(精确到
).(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是函数
(
,
,
,
)在区间
上的图象,为了得到这个函数的图象,只需将
(
)的图像上所有的点( )
![]()
A. 向左平移
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
B. 向左平移
个单位长度,再把所得各点的横坐标缩短到原来的
倍,纵坐标不变
C. 向左平移
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
D. 向左平移
个单位长度,再把所得各点的横坐标缩短到原来的
倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】江心洲有一块如图所示的江边,
,
为岸边,岸边形成
角,现拟在此江边用围网建一个江水养殖场,有两个方案:方案l:在岸边
上取两点
,用长度为
的围网依托岸边线
围成三角形
(
,
两边为围网);方案2:在岸边
,
上分别取点
,用长度为
的围网
依托岸边围成三角形
.请分别计算
,
面积的最大值,并比较哪个方案好.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com