精英家教网 > 高中数学 > 题目详情
18.用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有(  )
A.360个B.180个C.120个D.24个

分析 用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数,只有3+4+5+6=18能被9整除,故问题得以解决.

解答 解:因为3+4+5+6=18能被9整除,所以共有A44=24个.
故选:D.

点评 本题考查排列、组合及简单计数问题,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.函数f(x)的二次项系数为a,且f(x)>-2x的解集是(1,3).若f(x)+6a=0有两个等根,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列判断正确的是(  )
A.函数$f(x)=\frac{{{x^2}-x}}{x-1}$是奇函数
B.函数$f(x)=(1-x)\sqrt{\frac{1+x}{1-x}}$是偶函数
C.函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数
D.函数$y=\frac{{\sqrt{9-{x^2}}}}{{|{x+4}|+|{x+3}|}}$的图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x>y>0,下列各式正确的是(  )
A.$\frac{x+y}{2}$>x>$\sqrt{xy}$>yB.x>$\frac{x+y}{2}$>y>$\sqrt{xy}$C.x>y>$\frac{x+y}{2}$>$\sqrt{xy}$D.x>$\frac{x+y}{2}$>$\sqrt{xy}$>y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.工人的月工资y(元)与劳动生产率x(千元)的回归方程为$\stackrel{∧}{y}$=50+80x,下列判断正确的是(  )
A.劳动生产率为1000元时,工资为130元
B.劳动生产率提高1000元,则工资提高80元
C.劳动生产率提高1000元,则工资提高130元
D.当月工资为210元时,劳动生产率为2000元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{xn},Sn是{xn}的前n项和,且x3=5,S5+x5=34.
(Ⅰ)求{xn}的通项公式;
(Ⅱ)设an=($\frac{1}{3}$)n,Tn是{an}的前n项和,是否存在正数λ,对任意正整数n,k,不等式Tn-λxk2<λ2恒成立?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.口袋里有红球3个,白球2个,黑球1个,形状完全一样,从口袋中任取2个球,事件A为“取到的2个球颜色相同”,事件B为“取到的2个数均为红色”,则P(B|A)等于(  )
A.$\frac{1}{15}$B.$\frac{3}{4}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于函数$f(x)=3sin(2x+\frac{π}{6})$,有以下命题:
①x=$\frac{7π}{6}$是函数f(x)的对称轴; 
②$(-\frac{π}{12},0)$是函数f(x)的对称中心;
③在$[-\frac{π}{4},\frac{π}{12}]$上函数f(x)单调递增;
④在$[\frac{π}{6},\frac{2π}{3}]$上函数f(x)单调递减;
⑤函数f(x)是奇函数.
其中正确的命题序号是①②③④(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图(1),抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.

(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图(2)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线抛物线于E、F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y 轴上?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案