精英家教网 > 高中数学 > 题目详情
(2013•济南二模)某企业计划投资A,B两个项目,根据市场分析,A,B两个项目的利润率分别为随机变量X1和X2,X1和X2的分布列分别为:
X1 5% 10%
P 0.8 0.2
X2 2% 8% 12%
P 0.2 0.5 0.3
(1)若在A,B两个项目上各投资1000万元,Y1和Y2分别表示投资项目A和B所获得的利润,求利润的期望E(Y1),E(Y2)和方差D(Y1),D(Y2);
(2)由于资金限制,企业只能将x(0≤x≤1000)万元投资A项目,1000-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.
分析:(1)Y1和Y2分别表示投资项目A和B所获得的利润,根据两个投资项目的利润率分别为随机变量X1和X2的分布列,可以得到Y1和Y2的分布列,得到分布列,余下的问题只是运算问题,分别求出变量的期望和方差.
(2)由题意知f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和,写出用x表示的方差的解析式,结合二次函数的最值问题,得到结果.
解答:解:(1)由题设可知Y1和Y2的分布列为
Y1 50 100
P 0.8 0.2
Y2 20 80 120
P 0.2 0.5 0.3
--------------(2分)
E(Y1)=50×0.8+100×0.2=60,----------------------------------(3分)
D(Y1)=(50-60)2×0.8+(100-60)2×0.2=400,------------------------(4分)
E(Y2)=20×0.2+80×0.5+120×0.3=80,---------------------------------------(5分)
D(Y2)=(20-80)2×0.2+(80-80)2×0.5+(120-80)2×0.3=1200.-------------------(6分)
(2)f(x)=D(
x
1000
Y1)+D(
1000-x
1000
Y2)=
1
106
[x2D(Y1)+(1000-x)2D(Y2)]

=
4
104
[x2+3(1000-x)2]=
4
104
(4x2-6000x+3×106).--------------------------------(10分)
x=
6000
2×4
=750
时,f(x)=300为最小值.-------------------------------(12分)
点评:本题考查离散型随机变量的分布列和期望,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济南二模)函数y=2sin(
π
2
-2x)
是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)对大于或等于2的自然数m的n次方幂有如下分解方式:
    22=1+3   23=3+5                    
  32=1+3+5   33=7+9+11                   
42=1+3+5+7  43=13+15+17+19                  
    52=1+3+5+7+9           53=21+23+25+27+29
根据上述分解规律,若m3(m∈N*)的分解中最小的数是73,则m的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)若椭圆C1
x2
a12
+
y2
b12
=1
(a1>b1>0)和椭圆C2
x2
a22
+
y2
b22
=1
(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
a1
a2
b1
b2

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课程表的不同排法种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=
an3n

(1)证明数列{bn}是等差数列并求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案