分析 (1)取AB中点O,连结SO、DO,推导出AB⊥平面SDO,从而AB⊥SD,再求出AS⊥SD,由此能证明SD⊥平面SAB.
(2)四棱锥S-ABCD的表面积S=S梯形ABCD+S△ADS+S△SDC+S△SBC+S△SAB,由此能求出结果.
解答
证明:(1)取AB中点O,连结SO、DO,
∵AB∥CD,BC⊥CD,侧面SAB为等腰直角三角形.
SA=SB=2,AB=2DC,SD=1,BC=$\sqrt{3}$,
∴SO⊥AB,DO⊥AB,AB=$\sqrt{4+4}$=2$\sqrt{2}$,
∵SO∩DO=O,∴AB⊥平面SDO,
∵SD?平面SDO,∴AB⊥SD,
∴AO=BO=CD=$\sqrt{2}$,AD=BD=$\sqrt{2+3}$=$\sqrt{5}$,
∴AS2+SD2=AD2,∴AS⊥SD,
∵AB∩AS=A,∴SD⊥平面SAB.
解:(2)四棱锥S-ABCD的表面积:
S=S梯形ABCD+S△ADS+S△SDC+S△SBC+S△SAB
=$\frac{1}{2}(\sqrt{2}+2\sqrt{2})×\sqrt{3}$+$\frac{1}{2}×2×1$+$\frac{1}{2}×1×\sqrt{2}$+$\frac{1}{2}×2×\sqrt{3-1}$+$\frac{1}{2}×2×2$
=$\frac{3\sqrt{6}+6+3\sqrt{2}}{2}$.
点评 本题考查线面垂直的证明,考查四棱锥的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AD}=2\overrightarrow{AE}$ | B. | $\overrightarrow{AD}=4\overrightarrow{AE}$ | C. | $\overrightarrow{AD}=2\overrightarrow{EA}$ | D. | $\overrightarrow{AD}=4\overrightarrow{EA}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ③④ | C. | ③ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2.5 | 2.53125 | 2.546875 | 2.5625 | 2.625 | 2.75 |
| f(x) | 0.084 | 0.009 | 0.029 | 0.066 | 0.215 | 0.512 |
| A. | 2.5 | B. | 2.53 | C. | 2.54 | D. | 2.5625 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com