精英家教网 > 高中数学 > 题目详情

设F1、F2分别是双曲线C:数学公式的左、右焦点,若双曲线右支上存在一点P,使|OP|=|OF1|(O为原点),且数学公式,则双曲线的离心率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:依题意可知|OF1|=|OF2|=|OP|判断出∠F1PF2=90°,设出|PF2|=t,则|F1P|=t,进而利用双曲线定义可用t表示出a,根据勾股定理求得t和c的关系,最后可求得双曲线的离心率.
解答:∵|OF1|=|OF2|=|OP|
∴∠F1PF2=90°
设|PF2|=t,则|F1P|=t,a=
t2+3t2=4c2,则t=c
∴e==+1
故选D.
点评:本题主要考查了双曲线的简单性质.考查了学生对双曲线定义的理解和灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年聊城期末理)设F1,F2分别是双 曲线的左、右焦点。若双曲线上存在点A,使,则双曲线的离心率为    (    )

       A.                   B.                 C.                  D.

查看答案和解析>>

同步练习册答案