精英家教网 > 高中数学 > 题目详情

若实数x,y满足方程组=

A、0   B、   C、   D、1

 

【答案】

D

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知圆的方程是x2+y2=4,求斜率等于1的圆的切线的方程;
(2)若实数x,y,t,满足
x2
9
+
y2
16
=1
且t=x+y,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)在x=
t+2
2
处取得最小值-
t2
4
(t>0),f(1)=0
(1)求y=f(x)的表达式;
(2)若任意实数x都满足f(x)•g(x)+anx+bn=xn+1(g(x)为多项式,n∈N+),试用t表示an和bn
(3)设圆Cn的方程(x-an2+(y-bn2=rn2,圆Cn与Cn+1外切(n=1,2,3,…),{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn,Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)下列四种说法中正确的是

①“若am2<bm2,则a<b”的逆命题为真;
②线性回归方程对应的直线
y
=
b
x+
a
一定经过其样本数据点 (x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③若实数x,y∈[0,1],则满足:x2+y2>1的概率为
π
4

④用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实数k,b,使得函数f(x)和g(x)对其定义域上的任意实数x同时满足:f(x)≥kx+b且g(x)≤kx+b,则称直线:l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx(其中e为自然对数的底数).试问:
(1)函数f(x)和g(x)的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数f(x)和g(x)是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.
(1)(不等式选讲)若实数x、y满足|x|+|y|≤1,则x2-xy+y2的最大值为
1
1

(2)(坐标系与参数方程)若直线
x=1-2t
y=2+3t
(t为参数)与直线4x+ky=1垂直,则常数k=
-6
-6

查看答案和解析>>

同步练习册答案