精英家教网 > 高中数学 > 题目详情

函数f(x)对一切实数x都满足f(1+x)=f(1-x),f(x)=0有3个实根,则这3个实根之和为________.

3
分析:根据函数f(x)满足f(1-x)=f(1+x),可得函数的图象关于x=1对称,从而得到方程f(x)=0的3个实数解中有2个成对,一个就是x=1,由此可得结论.
解答:∵对于任意实数x,函数f(x)满足f(1-x)=f(1+x),
∴函数的图象关于x=1对称,
∴函数的零点关于x=1对称,
∴方程f(x)=0的根关于x=1对称,
∴方程f(x)=0的3个实数解中有2个成对,一个就是x=1,
∴成对的两个根之和等于2,
∴3个实根之和是2×1+1=3
故答案为:3
点评:本题考查函数的零点与方程的根的关系,解题的关键是看出函数的图象关于直线x=1对称,得到函数的零点是成对出现的,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,
(1)求f(0)的值.
(2)对任意的x1∈(0,
1
2
)
x2∈(0,
1
2
)
,都有f(x1)+2<logax2成立时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,
(1)求f(0)的值;
(2)当0≤x≤
12
时,f(x)+3<2x+a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对一切实数x都满足f(1+x)=f(1-x),f(x)=0有3个实根,则这3个实根之和为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;         
(2)求f(x)的解析式;
(3)已知a∈R,当0<x<
12
时,不等式f(x)+3<2x+a恒成立的实数a构成的集合记为A;
又当x∈[-2,2]时,满足函数g(x)=f(x)-ax是单调函数的实数a构成的集合记为B,求A∩CRB(R为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值    
(2)求f(x)的解析式
(3)若函数g(x)=(x+1)f(x)-a[f(x+1)-x]在区间(-1,2)上是减函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案