精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是菱形且∠ADC=60°.
(1)求证:PA⊥CD;
(2)求二面角P-AB-D的大小.
【答案】分析:(1)作PO⊥CD于O,连接OA,由侧面PDC与底面ABCD垂直,则PO⊥面ABCD.所以PO⊥OA且PO⊥OC,又由∠ADC=60°,DO=1,AD=2,知OA⊥CD,分别以OA,OC,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能够证明PA⊥CD.
(2)分别求出平面ABP的法向量和平面ABD的法向量,利用向量法能够求出二面角P-AB-D的大小.
解答:解:(1)作PO⊥CD于O,连接OA
由侧面PDC与底面ABCD垂直,则PO⊥面ABCD
所以PO⊥OA且PO⊥OC,又由∠ADC=60°,DO=1,AD=2,
则∠DOA=90°,即OA⊥CD
分别以OA,OC,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,
由已知P(0,0,),A(,0,0),D(0,-1,0),C(0,1,0),
=(,0,-),=(0,-2,0),
=0,∴
∴PA⊥CD.
(2)∵P(0,0,),A(,0,0),B(,2,0),D(0,-1,0),
=(,0,-),=(),
=(
设平面ABP的法向量为,则
,解得=(1,0,1).
设平面ABD的法向量为,则
,解得=(0,0,1),
设二面角P-AB-D的平面角为θ,
则cosθ=|cos<>|=||=
∴θ=45°,
故二面角P-AB-D的大小为45°.
点评:本题考查异面直线垂直的证明,考查二面角的大小的求法.解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PD、PC、BC的中点.
(I)求证:PA∥平面EFG;
(II)求平面EFG⊥平面PAD;
(III)若M是线段CD上一点,求三棱锥M-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2
2
,PA=2,求:
(1)三角形PCD的面积;
(2)异面直线BC与AE所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=
12
,AD=1.
(I)求证:CD⊥平面PAC
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,M为AB的中点.
(1)求证:BC∥平面PMD;
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.
(1)求证:PA∥平面MDB;
(2)求证:AD⊥平面PQB;
(3)若平面PAD⊥平面ABCD,且M为PC的中点,求四棱锥M-ABCD的体积.

查看答案和解析>>

同步练习册答案