精英家教网 > 高中数学 > 题目详情
已知圆方程(x-1)2+(y-1)2=9,过点A(2,3)作圆的任意弦,则中点P的轨迹方程是
 
考点:轨迹方程
专题:计算题,直线与圆
分析:设弦中点为M(x,y),由圆的性质可知CM⊥AM,由勾股定理,得中点P的轨迹方程.
解答: 解:由圆的方程可知,圆的圆心为C(1,1).
设弦中点为M(x,y),由圆的性质可知CM⊥AM,
由勾股定理,得 MC2+MA2=AC2,即[(x-1)2+(y-1)2]+[(x-2)2+(y-3)2]=(2-1)2+(3-1)2(也就是以AC为直径的一个圆)
化简整理,得所求的弦中点的轨迹方程:(x-1.5)2+(y-2)2=1.25.
故答案为:(x-1.5)2+(y-2)2=1.25.
点评:本题考查中点P的轨迹方程,考查圆的方程,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={(x,y)|x2+y2=0},B={(x,y)|xy=0},则下列结论正确的是(  )
A、A∩B=∅
B、A∩B={0,0}
C、A?B
D、A=B

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={1,x},B={0,1},且A=B,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x2-3x-4的定义域为[0,
3
2
]
,则值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域:
(1)y=
2x+1
+
1
1-2x
-
1
3x-1
;    
(2)y=
(x+1)0
|x|-x

(3)已知函数f(x)的定义域为(0,2),求f(2x-1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若动点P(a,b)到两直线l1:y=x和l2:y=-x+2的距离之和为
2
,则a2+b2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2ax-1,x∈[-2,2],
(1)当a=1时,求f(x)的最大与最小值;  
(2)求实数a的取值范围,使函数f(x)在[-2,2]上不是单调函数;    
(3)求函数f(x)的最大值g(a),并求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a,b,c分别是角A,B,C的对边,向量m=(2sinB,2-cos2B),n=(1+sinB,-1),且m⊥n.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC不是钝角三角形,且a=
3
,b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,且a≠1,若loga2=m,loga3=n,则a3m+2n=
 

查看答案和解析>>

同步练习册答案