精英家教网 > 高中数学 > 题目详情
已知A、B是圆心为C,半径为
5
的圆上两点,且|
AB
|=
5
,则
AC
CB
=
 
分析:利用向量的数量积运算即可得出.
解答:解:
AC
CB
=|
AC
| |
CB
|cos120°
=
5
×
5
×(-
1
2
)
=-
5
2

故答案为:-
5
2
点评:本题考查了向量的数量积运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B分别是椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)
的左右顶点,F1是椭圆C的左焦点,|AF1|=2-
3
,离心率e=
3
2

(1)求椭圆C的方程;
(2)设P为椭圆C上异于A,B的任意一点,且PH⊥x轴,H为垂足,延长HP到点Q使得|HP|=|PQ|,连接AQ,并延长AQ交直线l:x=2于M点,N为MB中点,求
OQ
QN
的值,并判断以O为圆心,OQ为半径的圆与直线QN的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)已知A,B是圆C(为圆心)上的两点,|
AB
|=2,则
AB
AC
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知
a
b
是两个不共线的非零向量.
(1)设
OA
=
a
OB
=t
b
(t∈R),
OC
=
1
3
(
a
+
b
)
,当A、B、C三点共线时,求t的值.
(2)如图,若
a
=
OD
b
=
OE
a
b
夹角为120°,|
a
|=|
b
|=1,点P是以O为圆心的圆弧
DE
上一动点,设
OP
=x
OD
+y
OE
(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知A,B是单位圆上的两点,O为圆心,且∠AOB=120°,MN是圆O的一条直径,点C在圆内,且满足
OC
OA
+(1-λ)
OB
(0<λ<1).
(Ⅰ)求证:点C在线段AB上;
(Ⅱ)求
CM
CN
的取值范围.

查看答案和解析>>

同步练习册答案