精英家教网 > 高中数学 > 题目详情
(2012•福建)某地图规划道路建设,考虑道路铺设方案,方案设计图中,点A,B,C表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为
16
16
分析:确定铺设道路的总费用最小时的线路为:A→E→F→G→D,从G分叉,G→C→B,即可求得铺设道路的最小总费用.
解答:解:由题意,铺设道路的总费用最小时的线路为:A→E→F→G→D,从G分叉,G→C→B
总费用为2+3+1+2+3+5=16
故答案为:16
点评:本题考查统筹方法在实际中的应用,考查学生阅读能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) 8 8.2 8.4 8.6 8.8 9
销量y(件) 90 84 83 80 75 68
(Ⅰ)求回归直线方程
y
=bx+a,其中b=-20,a=
y
-b
.
x

(Ⅱ)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建)如图,等边三角形OAB的边长为8
3
,且其三个顶点均在抛物线E:x2=2py(p>0)上.
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q.证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 PM2.5浓度
(微克/立方米)
频数(天) 频率
  第一组 (0,25] 5 0.25
第二组 (25,50] 10 0.5
第三组 (50,75] 3 0.15
第四组 (75,100) 2 0.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

同步练习册答案