精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
9
+y2=1
,过左焦点F1倾斜角为
π
6
的直线交椭圆于A、B两点.求弦AB的长
2
2
分析:求出椭圆的左焦点F1(-2
2
,0),根据点斜率式方程设AB:y=
3
3
(x+2
2
),与椭圆方程消去y得4x2+12
2
x
+15=0,利用根与系数的关系算出A、B的横坐标满足|x1-x2|=
3
,最后根据弦长公式即可算出弦AB的长.
解答:解:∵椭圆方程为
x2
9
+y2=1

∴焦点分别为F1(-2
2
,0),F2(2
2
,0),
∵直线AB过左焦点F1倾斜角为
π
6

∴直线AB的方程为y=
3
3
(x+2
2
),
将AB方程与椭圆方程消去y,得4x2+12
2
x
+15=0
设A(x1,y1),B(x2,y2),可得
x1+x2=-3
2
,x1x2=
15
4

∴|x1-x2|=
(x1+x2)2-4x1x2
=
3

因此,|AB|=
1+(
3
3
)2
•|x1-x2|=
4
3
3
=2
故答案为:2
点评:本题给出椭圆经过左焦点且倾角为30度的弦AB,求弦长.着重考查了椭圆的标准方程与简单几何性质、直线与椭圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xoy中,如图,已知椭圆
x2
9
+
y2
5
=1
的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=
1
3
,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+y2=1
的两个焦点分别为F1,F2,点P在椭圆上且
PF1
PF2
=0,则△PF1F2的面积是(  )
A、
1
2
B、
3
2
C、
3
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
4
=1与双曲线
x2
4
-y2=1有共同焦点F1,F2,点P是两曲线的一个交点,则|PF1|•|PF2|=
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
9
+y2=1
的两个焦点分别为F1,F2,点P在椭圆上且
PF1
PF2
=0,则△PF1F2的面积是(  )
A.
1
2
B.
3
2
C.
3
3
D.1

查看答案和解析>>

同步练习册答案