精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式的离心率为数学公式,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值.

(Ⅰ)解:由题意,以原点为圆心,椭圆短半轴长为半径的圆的方程为x2+y2=b2
∵直线x-y+2=0与圆相切,∴,即
,即
∵a2=b2+c2
,c=1,
所以椭圆方程为
(Ⅱ)证明:设P(x0,y0)(y0≠0),
,即
∵直线PA与PB的斜率分别为k1,k2


∴k1•k2为定值
分析:(I)写出圆的方程,利用直线与圆相切的充要条件列出方程求出b的值,利用椭圆的离心率公式得到a,c的关系,再利用椭圆本身三个参数的关系求出a,c的值,将a,b的值代入椭圆的方程即可.
(II)设出P的坐标,将其代入椭圆的方程得到P的坐标的关系,写出A,B的坐标,利用两点连线的斜率公式求出
k1,k2,将P的坐标的关系代入k1k2化简求出其值.
点评:本题重点考查圆锥曲线的方程,考查直线与圆锥曲线的位置关系,直线的斜率,解题的关键是利用待定系数法求圆锥曲线的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案