精英家教网 > 高中数学 > 题目详情
15.$\frac{si{n}^{2}216°-\frac{1}{2}}{sin18°}$的值为$-\frac{1}{2}$.

分析 直接利用二倍角公式以及诱导公式化简求解即可.

解答 解:$\frac{si{n}^{2}216°-\frac{1}{2}}{sin18°}$=$\frac{2si{n}^{2}36°-1}{2sin18°}$=$-\frac{cos72°}{2sin18°}$=$-\frac{sin18°}{2sin18°}$=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 本题考查二倍角公式以及诱导公式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线2x+y-3=0的倾斜角为θ,则$\frac{sinθ+cosθ}{sinθ-cosθ}$的值是(  )
A.-3B.-2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2-6x+8<0},B={x|x2-4ax+3a2<0}.
(1)若a=-1,求A∩(∁RB);
(2)若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合P={x||x|<3,x∈Z},集合Q={y|y=x+1,x∈P},则P∩Q=(  )
A.{-1,-2,0,1}B.{-1,0,1,2}C.{0,1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式$\frac{2f(x)-f(x)}{3x}$<0的解集为(  )
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别是a,b,c,且满足a=2$\sqrt{2}$,A=45°,cosB=$\frac{1}{2}$.
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设全集U={-2,-1,1,2,3},A={-2,1}.B={x|(x+1)(mx-4)=0}(m∈R).
(1)当m=2时,求∁u(A∪B);
(1)若A∩B≠∅,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-$\frac{1}{8}$.
(1)求sinC;
(2)当a=$\frac{\sqrt{2}}{3}$c,且b=3$\sqrt{7}$时,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.
为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上的球场中轴线上,y轴垂直于地平面,单位长度为1米,已知若不考虑球网的影响,网球发射后的轨迹在方程y=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.
(Ⅰ)求发射器的最大射程;
(Ⅱ)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

同步练习册答案