精英家教网 > 高中数学 > 题目详情

如图△ABD≌△CBD,△ABD为等腰三角形.∠BAD=∠BCD=90°,且面ABD⊥面BCD,则下列4个结论中,正确结论的是

①AC⊥BD;

②△ACD是等腰三角形;

③AB与平面BCD成60°角;

④AB与CD成60°角

[  ]
A.

①②③

B.

①②④

C.

①③④

D.

②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福州模拟)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)记三棱锥P-ABD体积为V1,四棱锥P-BDEF体积为V2.求当PB取得最小值时的V1:V2值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)(选修4-1 几何证明选讲)
如图,已知CB是⊙O的一条弦,A是⊙O上任意一点,过点A作⊙O的切线交直线CB于点P,D为⊙O上一点,且∠ABD=∠ABP.
求证:AB2=BP•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头二模)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABEFD.
(1)求证:BD⊥平面POA;
(2)记三棱锥P-ABD体积为V1,四棱锥P-BDEF体积为V2,且
V1
V2
=
4
3
,求此时线段PO的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四面体A-BCD中,有CB=CD,平面ABD⊥平面BCD,点E、F分别为BD,AB的中点,MN∥平面ABD.
(1)求证:平面ABD⊥平面EFC;
(2)如图,求证:直线MN∥直线GH.

查看答案和解析>>

同步练习册答案