精英家教网 > 高中数学 > 题目详情
已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有   
【答案】分析:本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证,发现正确结论写到横线上.
解答:解:①中取1和3两个元素验证,发现不正确;
②显然满足题意;
③若数列A具有性质P,则a1=0,所以对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.
④数列是等差数列,经验证满足题意;
故答案为:②③④.
点评:本题是一道新型的探索性问题,认真理解题目所给的条件后解决问题,通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项、现给出以下四个命题:①数列0,1,3具有性质P;②数列0,2,4,6具有性质P;③若数列A具有性质P,则a1=0;④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2,其中真命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知数列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性质P;对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项,现给出以下四个命题:
①数列0,2,4,6具有性质P;
②若数列A具有性质P,则a1=0;
③若数列A具有性质P且a1≠0an-an-k=ak(k=1,2,…,(n-1);
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a3=a1+a2
其中真命题有(  )

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:创新题(3)(解析版) 题型:解答题

已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有   

查看答案和解析>>

同步练习册答案