精英家教网 > 高中数学 > 题目详情

已知{an}为等差数列,且an≠0,公差d≠0.
(1)试证:数学公式数学公式数学公式
(2)根据(1)中的几个等式,试归纳出更一般的结论,并用数学归纳法证明.

解:(1)证明:由{an}为等差数列可得an-an-1=d(n≥2),则1/a{1}-1/a{2}=a{2}-a{1}/a{1a{2}}=d/a{1a{2}}得证;{C/{0{2}}}{a{1}}-{C/{1{2}}}{a{2}}+{C/{2{2}}}{a{3}}=1/a{1}-2/a{2}+1/a{3}=1/a{1}-1/a{2}+1/a{3}-1/a{2}=a{2}-a{1}/a{1a{2}}+a{2}-a{3}/a{2a{3}}=d•a{3}-a{1}/a{1a{2}a{3}}=2d2/a{1a{2}a{3} }得证;{C/{0{3}}}{a{1}}-{C/{1{3}}}{a{2}}+{C/{2{3}}}{a{3}}-{C/{3{3}}}{a{4}}=1/a{1}-3/a{2}+3/a{3}-1/a{4}=(1/a{1}-1/a{4})-(3/a{2}-3/a{3})=3d/a{1a{4}}-3d/a{2a{3}}=3d•a{2}a{3}-a{1}a{4} /a{1a{2}a{3}a{4}}=3d•2 d /a{1a{2}a{3}a{4}}=6d3/a{1a{2}a{3}a{4}}得证.(2)结论:{C/{0{n-1}}}{a{1}}-{C/{1{n-1}}}{a{2}}+{C/{2{n-1}}}{a{3}}-…+(-1){n+1/C{{n-1}{n-1}}}{a{n}}=(n-1)!d{n-1}/a{1a{2}…a{n}},证:①当n=2,3,4时,等式成立,②假设当n=k时,{C/{0{k-1}}}{a{1}}-{C/{1{k-1}}}{a{2}}+{C/{2{k-1}}}{a{3}}-+(-1){k+1/C{{k-1}{k-1}}}{a{k}}=(k-1)!d{k-1}/a{1a{2}a{k}}成立,那么当n=k+1时,因为Cki-1=Ck-1i-1+Ck-1k-2,所以{C/{0{k}}}{a{1}}-{C/{1{k}}}{a{2}}+{C/{2{k}}}{a{3}}-+(-1){k+2/C{{k}{k}}}{a{k+1}}={C/{0{k-1}}}{a{1}}-{C/{1{k-1}}+{C}{0{k-1}}}{a{2}}+{C/{2{k-1}}+{C}{1{k-1}}}{a{3}}-+(-1){k+1}({C/{k-1{k-1}}+{C}{{k-2}{k-1}})}{a{k}}+(-1){k+2/C{{k-1}{k-1}}}{a{k+1}}=({C/{0{k-1}}}{a{1}}-{C/{1{k-1}}}{a{2}}+{C/{2{k-1}}}{a{3}}-+(-1){k+1/C{{k-1}{k-1}}}{a{k}})-({C/{0{k-1}}}{a{2}}-{C/{1{k-1}}}{a{3}}+{C/{2{k-1}}}{a{4}}-+(-1){k+1/C{{k-1}{k-1}}}{a{k+1}})=(k-1)!d{k-1}/a{1a{2}a{k}}-(k-1)!d{k-1}/a{2a{3}a{k}}=(k-1)!d{k-1}/a{1a{2}a{k}}(a{k+1}-a{1})=k!d{k}/a{1a{2}a{k}a{k+1}},所以,当n=k+1时,结论也成立.综合①②知,{C/{0{n-1}}}{a{1}}-{C/{1{n-1}}}{a{2}}+{C/{2{n-1}}}{a{3}}-+(-1){n+1/C{{n-1}{n-1}}}{a{n}}=(n-1)!d{n-1}/a{1a{2}a{n}}对n≥2都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数an的前n项和为SnS10=
3
0
(1+3x)dx
,则a5+a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数到{an}中,a1=120,公差d=-4,Sn为其前n项和,若Sn≤an(n≥2).则n的最小值为(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为______.

查看答案和解析>>

科目:高中数学 来源:2009年江苏省苏州市高三教学调研数学试卷(解析版) 题型:解答题

已知命题:“在等差数(an)中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为   

查看答案和解析>>

同步练习册答案