精英家教网 > 高中数学 > 题目详情
下列四个命题中
①?x∈R,2x2-x+1>0;
②“x>1且y>2”是“x+y>3”的充要条件;
③函数y=
x2+2
+
1
x2+2
的最小值为2
其中假命题的为 ______(将你认为是假命题的序号都填上).
∵2x2-x+1=2(x-
1
4
2+
7
8
>0恒成立
故①?x∈R,2x2-x+1>0为真命题;
若“x>1且y>2”成立,由不等式的性质,我们易得:“x+y>3”
但“x+y>3”时,“x>1且y>2”却不一定成立
故“x>1且y>2”是“x+y>3”的充分不必要条件,故②错误;
令t=
x2+2
(t≥2)
则原函数可化为y=t+
1
t
(t≥2)
由函数y=t+
1
t
的单调性易知,[2,+∞)为函数的单调递增区间
故当t=2时,y有最小值
5
2
,故③错误.
故答案为:②③
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个命题中
①?x∈R,2x2-x+1>0;
②“x>1且y>2”是“x+y>3”的充要条件;
③函数y=
x2+2
+
1
x2+2
的最小值为2
其中假命题的为
 
(将你认为是假命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省重点中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:填空题

下列四个命题中
①?x∈R,2x2-x+1>0;
②“x>1且y>2”是“x+y>3”的充要条件;
③函数的最小值为2
其中假命题的为     (将你认为是假命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:2009年广东省韶关市高考数学一模试卷(文科)(解析版) 题型:解答题

下列四个命题中
①?x∈R,2x2-x+1>0;
②“x>1且y>2”是“x+y>3”的充要条件;
③函数的最小值为2
其中假命题的为     (将你认为是假命题的序号都填上).

查看答案和解析>>

同步练习册答案