精英家教网 > 高中数学 > 题目详情
已知sin(2α-β)=
3
5
,sinβ=-
12
13
,且α∈(
π
2
,π)
β∈(-
π
2
,0)
.求sinα的值.
分析:由α和β的范围,求出2α-β的范围,再根据sin(2α-β)的值大于0,得到2α-β的具体范围,可得的cos(2α-β)的值大于0,利用同角三角函数间的基本关系求出cos(2α-β)的值,同时由sinβ的值及β的范围,利用同角三角函数间的基本关系求出cosβ的值,把cos2α式子中的角2α变为(2α-β)+β,利用两角和与差的余弦函数公式化简后,将各种的值代入求出cos2α的值,再由二倍角的余弦函数公式化简cos2α,列出关于sinα的方程,由α的范围,开方即可求出sinα的值.
解答:解:∵
π
2
<α<π
,∴π<2α<2π,
-
π
2
<β<0
,∴0<-β<
π
2

π<2α-β<
2
,又sin(2α-β)=
3
5
>0

2π<2α-β<
2
,cos(2α-β)=
4
5

-
π
2
<β<0
,且sinβ=-
12
13

cosβ=
5
13

∴cos2α=cos[(2α-β)+β]
=cos(2α-β)cosβ-sin(2α-β)sinβ
=
4
5
×
5
13
-
3
5
×(-
12
13
)=
56
65

∵cos2α=1-2sin2α,∴sin2α=
9
130

α∈(
π
2
,π)

sinα=
3
130
130
点评:此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键,同时注意角度的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin
θ
2
+cos
θ
2
=
2
3
3
,那么sinθ的值为
 
,cos2θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
-x)=
3
3
,则cos2x
=
-
1
3
-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
-α)=
3
5
,则cos(π-α)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
+θ)=
3
5
,则cos(2θ-π)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知sin
α
2
+cos
α
2
=
3
3
,且cosα<0,那么tanα等于(  )

查看答案和解析>>

同步练习册答案