精英家教网 > 高中数学 > 题目详情
某校组织的一次篮球定点投篮比赛,其中甲、乙、丙三人投篮命中率分别是
12
,a,a
(0<a<1),三人各投一次,用ξ表示三人投篮命中的个数.
(1)求ξ的分布列及数学期望;
(2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求实数a的取值范围.
分析:(1)易知ξ的可能取值为0,1,2,3.ξ的分布列符合二项分布,由此能求出ξ的分布列及数学期望;
(2)由P(ξ=1)的值最大,知P(ξ=1)-P(ξ=0)=
1
2
[(1-a2)-(1-a)2]=a(1-a)≥0
P(ξ=1)-P(ξ=2)=
1
2
[(1-a2)-(2a-a2)]=
1-2a
2
≥0
P(ξ=1)-P(ξ=3)=
1
2
[(1-a2)-a2]=
1-2a2
2
≥0
,由此能求出a的取值范围.
解答:解:(1)ξ的可能取值为0,1,2,3;
P(ξ=0)=
C
0
1
(1-
1
2
)
C
0
2
(1-a)2=
1
2
(1-a)2

P(ξ=1)=
C
1
1
1
2
C
0
2
(1-a)2+
C
0
1
(1-
1
2
)
C
1
2
a(1-a)=
1
2
(1-a2)

P(ξ=2)=
C
1
1
1
2
C
1
2
a(1-a)+
C
0
1
(1-
1
2
)
C
2
2
a2=
1
2
(2a-a2)

P(ξ=3)=
C
1
1
1
2
C
2
2
a2=
a2
2
ξ 0 1 2 3
P
1
2
(1-a)2
1
2
(1-a2)
1
2
(2a-a2)
a2
2
所以ξ的分布列为ξ的数学期望为Eξ=0×
1
2
(1-a)2+1×
1
2
(1-a2)+2×
1
2
(2a-a2)+3×
a2
2
=
4a+1
2

(2)∵P(ξ=1)的值最大
P(ξ=1)-P(ξ=0)=
1
2
[(1-a2)-(1-a)2]=a(1-a)≥0
P(ξ=1)-P(ξ=2)=
1
2
[(1-a2)-(2a-a2)]=
1-2a
2
≥0
P(ξ=1)-P(ξ=3)=
1
2
[(1-a2)-a2]=
1-2a2
2
≥0

解得0<a≤
1
2

又∵0<a<1,∴0<a≤
1
2

当a的取值范围是(0,  
1
2
]
时,P(ξ=1)的值最大.
点评:本题考查二项分布的性质和应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用二项分布的性质解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是
1
3
1
2
.两人共投篮3次,且第一次由甲开始投篮.假设每人每次投篮命中与否均互不影响.
(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;
(Ⅱ)若投篮命中一次得1分,否则得0分.用ξ表示甲的总得分,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南开区二模)在某校组织的一次篮球定点投篮测试中,规定每人最多投3次.每次投篮的结果相互独立.在A处每投进一球得3分,在B处每投进一球得2分,否则得0分.将学生得分逐次累加并用ξ表示,如果ξ的值不低于3分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在A处投一球,以后都在B处投:方案2:都在B处投篮.甲同学在A处投篮的命中率为0.5,在B处投篮的命中率为0.8.
(1)当甲同学选择方案1时.
①求甲同学测试结束后所得总分等于4的概率:
②求甲同学测试结束后所得总分ξ的分布列和数学期望Eξ;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为
  ξ 0 2    3    4    5
        p 0.03    P1    P2 P3 P4
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每次投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,ξ=0的概率为0.03.
(1)写出ξ值所有可能的值;
(2)求q2的值;
(3)求得到总分最大值的概率.

查看答案和解析>>

同步练习册答案