科目:高中数学 来源:2012-2013学年湖北省仙桃市高三第二次月考理科数学试卷(解析版) 题型:解答题
(本小题共14分)已知函数
其中常数
.
(1)当
时,求函数
的单调递增区间;
(2)当
时,若函数
有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数
在点
处的切线方程为
当
时,若
在D内恒成立,则称P为函数
的“类对称点”,请你探究当
时,函数
是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三上学期期末理科数学试卷 题型:解答题
已知函数
其中常数![]()
(1)当
时,求函数
的单调递增区间;
(2)当
时,给出两类直线:
与
,其中
为常数,判断这两类直线中是否存在
的切线,若存在,求出相应的
或
的值,若不存在,说明理由.
(3)设定义在
上的函数
在点
处的切线方程为
,当
若
在
内恒成立,则称
为函数
的“类对称点”,当
时,试问
是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省高三12月月考理科数学卷 题型:选择题
设
,若区间
是函数
的单调递增区间,将
的图象按向量
的方向平移得到一个新的函数
的图象,则
的一个单调
递减区间可以是
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com