精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

【答案】

(1);(2)的取值范围是 ;(3)见解析。

【解析】

试题分析:(Ⅰ)求导函数,利用图象在点(1,f(1))处的切线与直线y=2x+1平行,可得f′(1)=a-b=2,即可求a,b满足的关系式;

(Ⅱ)由(Ⅰ)知,构造新函数g(x)=f(x)-2lnx=-2lnx,x∈[1,+∞)则根据g(1)=0,g′(x),比较对应方程根的大小,进行分类讨论,即可求得a的取值范围;

(1),根据题意,即 ………3分

(2)由(1)知,,………4分

=   ………5分

①当时,  ,

,则为减函数,存在

上不恒成立.                   ………6分

时,,当时,增函数,又

,∴恒成立.………7分

综上所述,所求的取值范围是 …………8分

(3)由(2)知当时,上恒成立.取

, 

  ……10分

  

  

  ………11分

上式中令n=1,2,3,…,n,并注意到:

然后n个不等式相加得到  ………14分

考点:本试题主要考查了导数知识的运用,考查恒成立问题,考查不等式的证明。属于中档试题。

点评:解决该试题的关键是正确求出导函数,构造新函数,利用函数的单调性解题,这是解决一般不等式恒成立问题的常用的方法,也是比较重要的方法。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

同步练习册答案