精英家教网 > 高中数学 > 题目详情
9.已知椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F1,F2分别是其左、右焦点,O是坐标原点,A是椭圆上不同于顶点的任一点,$∠A{F_1}{F_2}={30^0},AO=O{F_2}$,该椭圆的离心率e=$\sqrt{3}$-1.

分析 易得AF1F2是以A为直角定点的直角三角形,AF1=2a-c,AF2=c.由勾股定理得,(2a-c)2+c2=(2c)2⇒2ac+c2-a2=0⇒离心率e.

解答 解:A是椭圆上不同于顶点的任一点,$∠A{F_1}{F_2}={30^0},AO=O{F_2}$,
∴△AF1F2是以A为直角定点的直角三角形,∴AF1=2a-c,AF2=c.
由勾股定理得,(2a-c)2+c2=(2c)2⇒,2ac+c2-a2=0⇒离心率e=$\sqrt{3}-1$.
故答案为:$\sqrt{3}-1$.

点评 本题考查了椭圆的离心率,多用定义及平面几何的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,在三棱锥A-BCD中,AB⊥AD,AC⊥AD,∠BAC=60°,AB=AC=AD=4,点P,Q分别在侧面ABC棱AD上运动,PQ=2,M为线段PQ中点,当P,Q运动时,点M的轨迹把三棱锥A-BCD分成上、下两部分的体积之比等于$\frac{π}{{48\sqrt{3}-π}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1,若P(x,y)是椭圆C上一动点,则x2+y2-2x的取值范围是(  )
A.[6-2$\sqrt{6}$,9]B.[6-2$\sqrt{6}$,11]C.[6+2$\sqrt{6}$,9]D.[6+2$\sqrt{6}$,11]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P:?x∈Z,x3<1,则¬P是(  )
A.?x∈Z,x3≥1B.?x∉Z,x3≥1C.?x∈Z,x3≥1D.?x∉Z,x3≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.实数2,b,a依次成等比数列,则方程$a{x^2}+bx+\frac{1}{3}=0$的实根个数为(  )
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线3x+4y+m=0向左平移2个单位,再向上平移3个单位后与圆x2+y2=1相切,则m=23或13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(x-1)-k(x-1)+1(k∈R).
(I)求函数f(x)的单调区间;
(II)若f(x)≤0恒成立,试确定实数k的取值范围;
(III)证明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({N∈{N_+}且n≥2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)计算:$\sqrt{9}-\sqrt{2}×\root{3}{2}×\root{6}{2}$
(2)已知x+x-1=3(x>0),求x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个.商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个.为了每日获得最大利润,则此商品的售价应定为每个多少元?并求获得的最大利润.

查看答案和解析>>

同步练习册答案