精英家教网 > 高中数学 > 题目详情
定义a*b=-ka-2,则方程x*x=0有唯一解时,实数k的取值范围是( )
A.{-}
B.[-2,-1]∪[1,2]
C.[-]
D.[-]∪[1,]
【答案】分析:根据新定义,将方程x*x=0转化为无理方程有唯一解,分离成,利用方程两边的函数图象有唯一公共点,可以解出k的取值范围.
解答:解:由题中给出的定义,得方程x*x=0即

移项得
作出函数和y=kx+2的图象如下:

直线恒过点(0,2),当直线的斜率为±1时,直线与双曲线的渐近线平行,两个图象有唯一公共点,
 当直线的斜率为±2时,直线过双曲线的顶点,刚好也是一个公共点,符合题意,
观察图象的变化,得直线的斜率的范围是k∈[-2,-1]∪[1,2]
故选B
点评:本题着重考查了零点存在性以及函数与方程的知识点,属于基础题.读懂新定义,将方程转化为无理方程再用数形结合的方法,结合函数的图象解决是本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义a*b=
ab-1
-ka-2,则方程x*x=0有唯一解时,实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)对于任意的平面向量
a
=(x1y1),
b
=(x2y2)
,定义新运算⊕:
a
b
=(x1+x2y1y2)
.若
a
b
c
为平面向量,k∈R,则下列运算性质一定成立的所有序号是
①④
①④

a
b
=
b
a
;    ②(k
a
)⊕
b
=
a
⊕(k
b
)
;    ③k(
a
b
)=(k
a
)⊕(k
b
)

a
⊕(
b
c
)=(
a
b
)⊕
c
;     ⑤
a
⊕(
b
+
c
)=
a
b
+
a
c

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义a*b=数学公式-ka-2,则方程x*x=0有唯一解时,实数k的取值范围是


  1. A.
    {-数学公式数学公式}
  2. B.
    [-2,-1]∪[1,2]
  3. C.
    [-数学公式数学公式]
  4. D.
    [-数学公式]∪[1,数学公式]

查看答案和解析>>

科目:高中数学 来源:2013年高考数学压轴小题训练:函数的零点及方程的根(解析版) 题型:选择题

定义a*b=-ka-2,则方程x*x=0有唯一解时,实数k的取值范围是( )
A.{-}
B.[-2,-1]∪[1,2]
C.[-]
D.[-]∪[1,]

查看答案和解析>>

同步练习册答案