精英家教网 > 高中数学 > 题目详情
10.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x
(1)求f(x);
(2)若y=f(x)-kx在[2,4]上是单调减函数,求k的取值范围.

分析 (1)要求二次函数的解析式,利用直接设解析式的方法,一定要注意二次项系数不等于零,在解答的过程中使用系数的对应关系,解方程组求的结果;
(2)若y=f(x)-kx在[2,4]上是单调减函数,则$\frac{k+1}{2}$≥4,解得k的取值范围.

解答 解:(1)设二次函数的解析式为f(x)=ax2+bx+c (a≠0)
由f(0)=1得c=1,
故f(x)=ax2+bx+1.
因为f(x+1)-f(x)=2x,
所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,
故2a=2,且a+b=0,
∴a=1.b=-1
所以f(x)=x2-x+1,
(2)函数y=f(x)-kx=x2-(k+1)x+1的图象是开口朝上,且以直线x=$\frac{k+1}{2}$为对称轴的抛物线,
若y=f(x)-kx在[2,4]上是单调减函数,则$\frac{k+1}{2}$≥4,
解得:k≥7

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.二次函数f(x)满足:f(2-x)=f(2+x),又f(0)=0,f(-1)=5,若y=f(x)在[-4,t]上的值域为[-4,32],则实数t的取值范围是[2,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+1.5-2 
(2)1g500+1g$\frac{8}{5}$-$\frac{1}{2}$1g64+(lg2+1g5)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C:x2+y2-4x-2y-4=0及点P(4,-3),直线mx-y-2m+1=0与圆C交于两点A,B.
(1)求过点P且被圆C截得的弦长为2$\sqrt{5}$的直线方程;
(2)试探究$\overrightarrow{PA}$•$\overrightarrow{PB}$是否为定值?若为定值,请求出;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|2x-1|-1;
(1)作出函数f(x)的图象;
(2)讨论方程f(x)-2a=0(a∈R)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数y=$\frac{{x}^{2}+1}{{x}^{2}+x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ex-ax-a,g(x)=me-x-ax+a.
(1)若函数f(x)-g(x)为偶函数,求m的值;
(2)在(1)的条件下,若a>0,f(x)≥0对一切x∈R恒成立,且存在g(x0)≥0,求a的值;
(3)设h(x)=f(x)+$\frac{a}{{e}^{x}}$,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=h(x)上任意两点,若对任意a≤-1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$>m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若log5$\frac{1}{2}$•log29•log9a=-2,则a=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD为直角梯形,AB、AD、AP互相垂直,AD=2BC,过BC的平面分别交PA、PD于M、N两点(M不与A重合).
(1)求证:MN∥平面ABCD
(2)已知BC=2,AB=3,PA=6,E、M分别为BC、PA的中点,求异面直线DE和CN所成的角的大小.

查看答案和解析>>

同步练习册答案