精英家教网 > 高中数学 > 题目详情

在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E、F分别为AB、CD的中点.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求证:AB∥l.

解:(1)证明:由SA=SB,E为AB中点得SE⊥AB.由SC=SD,F为CD中点得SF⊥DC.又AB∥DC,∴AB⊥SF.
又SF∩SE=S,∴AB⊥平面SEF.
又∵AB?平面ABCD,
∴平面SEF⊥平面ABCD.
(2)∵AB∥CD,CD?面SCD,
∴AB∥平面SCD.
又∵平面SAB∩平面SCD=l,
根据直线与平面平行的性质定理得AB∥l.
分析:(1)欲证平面SEF⊥平面ABCD,根据面面垂直的判定定理可知在平面ABCD内一直线与平面SEF垂直,而根据线面垂直的性质定理可知AB⊥平面SEF;
(2)根据线面平行的判定定理可知AB∥平面SCD,而平面SAB∩平面SCD=l,再根据直线与平面平行的性质定理得AB∥l.
点评:本小题主要考查平面与平面垂直的判定,以及线面平行的判定定理和性质定理等有关知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD是边长为2的正方形,侧棱SD=2,SA=2
2
,∠SDC=120°.
(1)求证:侧面SDC⊥底面ABCD;
(2)求侧棱SB与底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是平行四边形,∠BAD=30°,AB=2,AD=
3
,E是SC的中点.
(Ⅰ)求证:SA∥平面BDE;
(Ⅱ)求证:AD⊥SB;
(Ⅲ)若SD=2,求棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥S-ABCD中,BA⊥面SAD,CD⊥面SAD,SA⊥SD,且SA=SD=DC=2AB.O为AD中点.
(1)求证:SO⊥BC;
(2)求直线SO与面SBC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,BC=3SA=3AB=3AD.
(1)求CD和SB所成角大小;
(2)已知点G在BC边上,①若G点与B点重合,求二面角S-DB-A的大小;
②若BG:GC=2:1,求二面角S-DG-A的大小.

查看答案和解析>>

同步练习册答案