ijÊл·±£Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³ÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖÐ×ÛºÏÎÛȾָÊýf£¨x£©Óëʱ¼äx£¨Ð¡Ê±£©µÄ¹ØϵΪf£¨x£©=|
1
2
sin
¦Ð
32
x+
1
3
-a
|+2a£¬x¡Ê[0£¬24]£¬ÆäÖÐaΪÓëÆøÏóÓйصIJÎÊý£¬ÇÒa¡Ê[
1
3
£¬
3
4
]
£®Èô½«Ã¿ÌìÖÐf£¨x£©µÄ×î´óÖµ×÷Ϊµ±ÌìµÄ×ÛºÏÎÛȾָÊý£¬²¢¼Ç×÷M£¨a£©£®
£¨¢ñ£©Áît=
1
2
sin
¦Ð
32
x
£¬x¡Ê[0£¬24]£¬ÇótµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©Çóº¯ÊýM£¨a£©µÄ½âÎöʽ£»
£¨¢ó£©Îª¼ÓÇ¿¶Ô»·¾³ÎÛȾµÄÕûÖΣ¬ÊÐÕþ¸®¹æ¶¨Ã¿ÌìµÄ×ÛºÏÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊÇ·ñ³¬±ê£¿
·ÖÎö£º£¨I£©ÀûÓÃÕýÏÒº¯ÊýµÄÐÔÖÊ£¬¿ÉÇótµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©·ÖÀàÌÖÂÛÇó×îÖµ£¬¼´¿ÉÇóº¯ÊýM£¨a£©µÄ½âÎöʽ£»
£¨¢ó£©ÓÉ£¨¢ò£©ÖªM£¨a£©µÄ×î´óֵΪ
23
12
£¬ËüСÓÚ2£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪx¡Ê[0£¬24]£¬ËùÒÔ
¦Ðx
32
¡Ê[0£¬
3¦Ð
4
]
£¬ËùÒÔsin(
¦Ðx
32
)¡Ê[0£¬1]
£¬¹Êt¡Ê[0£¬
1
2
]
£®
£¨¢ò£©ÒòΪa¡Ê[
1
3
£¬
3
4
]
£¬ËùÒÔ0¡Üa-
1
3
¡Ü
5
12
£¼
1
2
£¬
ËùÒÔf(t)=|t-(a-
1
3
)|+2a=
-t+3a-
1
3
£¬t¡Ê[0£¬a-
1
3
]
t+a+
1
3
£¬t¡Ê[a-
1
3
£¬
1
2
]
£®
µ±t¡Ê[0£¬a-
1
3
]
ʱ£¬f(t)max=f(0)=3a-
1
3
£»
µ±t¡Ê[a-
1
3
£¬
1
2
]
£¬f(t)max=f(
1
2
)=
5
6
+a
£®
¶øf(0)-f(
1
2
)=2a-
7
6
£¬
µ±
1
3
¡Üa¡Ü
7
12
£¬f(0)¡Üf(
1
2
)
£¬M(a)=f(
1
2
)=
5
6
+a
£»
µ±
7
12
£¼a¡Ü
3
4
£¬f(0)£¾f(
1
2
)
£¬M(a)=f(0)=3a-
1
3
£®
ËùÒÔM(a)=
5
6
+a£¬a¡Ê[
1
3
£¬
7
12
]
3a-
1
3
£¬a¡Ê(
7
12
£¬
3
4
]
£¬
£¨¢ó£©ÓÉ£¨¢ò£©ÖªM£¨a£©µÄ×î´óֵΪ
23
12
£¬ËüСÓÚ2£¬ËùÒÔÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýûÓг¬±ê£®
µãÆÀ£º±¾Ì⿼²éÈý½Çº¯ÊýµÄÐÔÖÊ£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijÊл·±£Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³ÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖл·¾³×ÛºÏÎÛȾָÊýf£¨x£©Óëʱ¼äx£¨Ð¡Ê±£©µÄ¹ØϵΪf(x)=|
x
x2+1
+
1
3
-a|+2a
£¬x¡Ê[{0£¬24}]£¬ÆäÖÐaÓëÆøÏóÓйصIJÎÊý£¬ÇÒa¡Ê[0£¬
3
4
]
£¬ÈôÓÃÿÌìf£¨x£©µÄ×î´óֵΪµ±ÌìµÄ×ÛºÏÎÛȾָÊý£¬²¢¼Ç×÷M£¨a£©£®
£¨1£©Áît=
x
x2+1
£¬x¡Ê[0£¬24]
£¬ÇótµÄÈ¡Öµ·¶Î§£»
£¨2£©Çóº¯ÊýM£¨a£©£»
£¨3£©ÊÐÕþ¸®¹æ¶¨£¬Ã¿ÌìµÄ×ÛºÏÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊǶàÉÙ£¿ÊÇ·ñ³¬±ê£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijÊл·±£Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³ÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖÐ×ÛºÏÎÛȾָÊýÓëʱ¼äx(Сʱ)µÄ¹ØϵΪ£½£ü£ü£«2a£¬£¬ÆäÖÐaΪÓëÆøÏóÓйصIJÎÊý£¬ÇÒ£®Èô½«Ã¿ÌìÖеÄ×î´óÖµ×÷Ϊµ±ÌìµÄ×ÛºÏÎÛȾָÊý£¬²¢¼Ç×÷M(a) £®

(¢ñ)Áît£½£¬£¬ÇótµÄÈ¡Öµ·¶Î§£»

(¢ò) Çóº¯ÊýM(a)µÄ½âÎöʽ£»

(¢ó) Ϊ¼ÓÇ¿¶Ô»·¾³ÎÛȾµÄÕûÖΣ¬ÊÐÕþ¸®¹æ¶¨Ã¿ÌìµÄ×ÛºÏÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊÇ·ñ³¬±ê£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­Ëո߿¼ÊýѧԤ²âÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ijÊл·±£Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³ÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖл·¾³×ÛºÏÎÛȾָÊýf£¨x£©Óëʱ¼äx£¨Ð¡Ê±£©µÄ¹ØϵΪ£¬x¡Ê[{0£¬24}]£¬ÆäÖÐaÓëÆøÏóÓйصIJÎÊý£¬ÇÒ£¬ÈôÓÃÿÌìf£¨x£©µÄ×î´óֵΪµ±ÌìµÄ×ÛºÏÎÛȾָÊý£¬²¢¼Ç×÷M£¨a£©£®
£¨1£©ÁÇótµÄÈ¡Öµ·¶Î§£»
£¨2£©Çóº¯ÊýM£¨a£©£»
£¨3£©ÊÐÕþ¸®¹æ¶¨£¬Ã¿ÌìµÄ×ÛºÏÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊǶàÉÙ£¿ÊÇ·ñ³¬±ê£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê½­ËÕÊ¡ÄÏͨÊк£°²Ïظ߿¼»Ø¹é¿Î±¾×¨Ïî¼ì²âÊýѧÊÔ¾í£¨Ò»£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ijÊл·±£Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³ÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖл·¾³×ÛºÏÎÛȾָÊýf£¨x£©Óëʱ¼äx£¨Ð¡Ê±£©µÄ¹ØϵΪ£¬x¡Ê[{0£¬24}]£¬ÆäÖÐaÓëÆøÏóÓйصIJÎÊý£¬ÇÒ£¬ÈôÓÃÿÌìf£¨x£©µÄ×î´óֵΪµ±ÌìµÄ×ÛºÏÎÛȾָÊý£¬²¢¼Ç×÷M£¨a£©£®
£¨1£©ÁÇótµÄÈ¡Öµ·¶Î§£»
£¨2£©Çóº¯ÊýM£¨a£©£»
£¨3£©ÊÐÕþ¸®¹æ¶¨£¬Ã¿ÌìµÄ×ÛºÏÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊǶàÉÙ£¿ÊÇ·ñ³¬±ê£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸