精英家教网 > 高中数学 > 题目详情
(理)如图,P为△ABC所在平面外一点,且PA⊥平面ABC,∠ACB=90°,过点A作垂直于PC的截面ADE,截面交PC于点D,交PB于点E.
(Ⅰ)求证:BC⊥PC;                         
(Ⅱ)求证:DE平面ABC;
(Ⅲ) 若点M为△PBC内的点,且满足M到AD的距离等于M到BC的距离,试指出点M的轨迹是什么图形,并说明理由.
精英家教网
(Ⅰ)证明:∵P为△ABC所在平面外一点,且PA⊥平面ABC
∴平面PAC⊥平面ABC
∵∠ACB=90°,
∴BC⊥AC
∵平面PAC∩平面ABC=AC
∴BC⊥平面PAC
∵PC?平面PAC
∴BC⊥PC;                         
(Ⅱ)证明:∵PC⊥截面ADE,DE?截面ADE
∴PC⊥DE
∵BC⊥PC
∴DEBC
∵DE?平面ABC,BC?平面ABC
∴DE平面ABC;
(Ⅲ) 连接MD
∵PC⊥截面ADE,AD?截面ADE
∴AD⊥BC
精英家教网

∵BC⊥平面PAC,AD?平面PAC
∴AD⊥平面PBC
∵MD?平面PBC
∴AD⊥MD
∴MD为M到AD的距离
∵点M为△PBC内的点,且满足M到AD的距离等于M到BC的距离
∴根据抛物线的定义,可知点M的轨迹是抛物线的一部分.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,点 E在线段PC上,设
PEEC
,PA=AB.
(I)证明:BD⊥PC;
(Ⅱ)当λ为何值时,PC⊥平面BDE;
(Ⅲ)在(Ⅱ)的条件下,求二面角B-PC-A的平面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图,P为△ABC所在平面外一点,且PA⊥平面ABC,∠ACB=90°,过点A作垂直于PC的截面ADE,截面交PC于点D,交PB于点E.
(Ⅰ)求证:BC⊥PC;                         
(Ⅱ)求证:DE∥平面ABC;
(Ⅲ) 若点M为△PBC内的点,且满足M到AD的距离等于M到BC的距离,试指出点M的轨迹是什么图形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(理) 如图,已知四棱锥P-ABCD的底面ABCD是边长为a的正方形,点O为该正方形的中心,侧棱PA=PC,PB=PD.
(1)求证:四棱锥P-ABCD是正四棱锥;
(2)设点Q是侧棱PD的中点,且PD的长为2a.求异面直线OQ与AB所成角的大小.(用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)如图,P为△ABC所在平面外一点,且PA⊥平面ABC,∠ACB=90°,过点A作垂直于PC的截面ADE,截面交PC于点D,交PB于点E.
(Ⅰ)求证:BC⊥PC;            
(Ⅱ)求证:DE∥平面ABC;
(Ⅲ) 若点M为△PBC内的点,且满足M到AD的距离等于M到BC的距离,试指出点M的轨迹是什么图形,并说明理由.

查看答案和解析>>

同步练习册答案