精英家教网 > 高中数学 > 题目详情
已知定义在R上的偶函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x2.若直线y=x+a与曲线y=f(x)恰有三个交点,则a的取值范围为(  )
分析:先求出-1≤x≤0时f(x)的解析式,即得x∈[-1,1]时f(x)的解析式,再据周期性可得 x∈[2k-1,2k+1]时f(x)的解析式,如图,直线y=x+a的斜率为1,在y轴上的截距等于a,故直线过顶点或与曲线相切时,从而可求a的范围
解答:解:由函数为偶函数可得f(-x)=f(x)
由f(x)的图象关于直线x=1对称可得f(2+x)=f(-x′)
∴f(x)=f(x+2),即函数是以2为周期的周期函数,
∵当0≤x≤1时,f(x)=x2
设-1≤x≤0,则0≤-x≤1,f(-x)=(-x)2=x2,=f(x)
x∈[-1,1],f(x)=x2
∴x∈[2k-1,2k+1],f(x)=(x-2k)2其图象如图所示
由于直线y=x+a的斜率为1,在y轴上的截距等于a,在一个周期[-1,1]上,
a=0时直线与曲线只要2个交点,a=-
1
4
时,在此周期上直线和曲线相切并和曲线在下一个区间上图象有一个交点. 由于f(x)的周期为2
故在定义域内,满足条件的a 应是[2k+0,2k-
1
4
]k∈Z.
故选:C
点评:本题主要考查了函数的周期性、奇偶性、函数的解析式的求解,体现了数形结合思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则


  1. A.
    f(x)是奇函数,但不是偶函数
  2. B.
    f(x)是偶函数,但不是奇函数
  3. C.
    f(x)既是奇函数,又是偶函数
  4. D.
    f(x)既非奇函数,又非偶函

查看答案和解析>>

同步练习册答案