精英家教网 > 高中数学 > 题目详情
(本题满分14分)
如图, ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.

(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.
证明:(1)在矩形ABCD中,由AP=BP=BC=2a可得PC=PD=………………1分
又CD=4a,由勾股定理可得PD⊥PC……………………3分
因为CF⊥平面ABCD,则PD⊥CF……………………5分
由PCCF=C可得PD⊥平面PFC……………………6分
故平面PCF⊥平面PDE……………………7分
(2)作FC中点M,连接EM、BM
由CF⊥平面ABCD,DE⊥平面ABCD可得CM∥DE,又CM=DE=a,得四边形DEMC为平行四边形……………………9分
故ME∥CD∥AB,且ME=D=AB,所以四边形AEMB为平行四边形
故AE∥BM……………………12分
又AE平面BCF,BM平面BCF,所以AE∥平面BCF. ……………………14分
注:本题也可以用平面ADE∥平面BCF证。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,为正三角形,平面的中点,

(1)求证:DM//面ABC;   
(2)平面平面
(3)求直线AD与面AEC所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D为B1C1的中点。
(Ⅰ)证明:B1C⊥面A1BD
(Ⅱ)求二面角B—AC—B1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
在三棱锥中,△ABC是边长为4的正三角形,平面,M、N分别为AB、SB的中点。

(1)证明:
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线上的一个点在平面α内,另一个点在平面α外,则直线与平面α的位置关系是(   )
A.αB.αC.∥αD.以上都不正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分14分)
在三棱锥中,是边长为的正三角形,平面⊥平面分别为的中点。
(1)证明:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本题满分14分).如图,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,
EF∥AC, EF=, CE=1
(1)求证:AF∥面BDE
(2)求CF与面DCE所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知在三棱锥T-ABC中,TA,TB,TC两两垂直,T在地面ABC上的投影为D,给出下列命题:
①TA⊥BC, TB⊥AC, TC⊥AB;
②△ABC是锐角三角形;
;
(注:表示△ABC的面积)
其中正确的是_______(写出所有正确命题的编号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是平面,是直线,且平面,则与平面的位置关系是 
A.平面B.平面
C.平面D.与平面相交但不垂直

查看答案和解析>>

同步练习册答案