精英家教网 > 高中数学 > 题目详情
如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是   
【答案】分析:首先猜想出结论:.,再进行证明:在△BCD内,延长DO交BC于E,连接AE,利用线面垂直的判定与性质可以证出AE⊥BC且DE⊥BC,从而AE、EO、ED分别是△ABC、△BCO、△BCD的边BC的高线,然后在Rt△ADE中,利用已知条件的结论得到AE2=EO•ED,再变形整理得到,说明猜想正确.
解答:解:结论:
证明如下
在△BCD内,延长DO交BC于E,连接AE,
∵AD⊥平面ABC,BC?平面ABC,
∴BC⊥AD,
同理可得:BC⊥AO
∵AD、AO是平面AOD内的相交直线,
∴BC⊥平面AOD
∵AE、DE?平面AOD
∴AE⊥BC且DE⊥BC
∵△AED中,EA⊥AD,AO⊥DE
∴根据题中的已知结论,得AE2=EO•ED
两边都乘以(BC)2,得(BC•AE)2=(BC•EO)•(BC•ED)
∵AE、EO、ED分别是△ABC、△BCO、△BCD的边BC的高线
∴S△ABC=BC•AE,S△BC0=BC•EO,S△BCD=BC•ED
所以有,结论成立.
点评:本题以平面几何中的射影定理为例,将其推广到空间的一个正确的命题并加以证明,着重考查了类比推理和空间的线面垂直的判定与性质等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是
S△ABC2=S△BCOS△BCD
S△ABC2=S△BCOS△BCD

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省舟山市岱山县大衢中学高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省舟山市岱山县大衢中学高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是   

查看答案和解析>>

科目:高中数学 来源:2012年广东省新课程高考冲刺全真模拟数学试卷7(文科)(解析版) 题型:解答题

如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是   

查看答案和解析>>

同步练习册答案