精英家教网 > 高中数学 > 题目详情

若集合A={x|x2+ax+1=0,x∈R},集合B={1,2},且A⊆B,求实数a的取值范围.

解:根据题意,A⊆B,分3种情况讨论:
(1)若A=?,则△=a2-4<0,解得-2<a<2;
(2)若1∈A,则12+a+1=0,解得a=-2,此时A={1},适合题意;
(3)若2∈A,则22+2a+1=0,解得此时,不合题意;
综上所述,实数a的取值范围为[-2,2).
分析:根据题意,集合B={1,2},且A⊆B,A是x2+ax+1=0的解集,根据其解的可能情况,分类讨论可得答案.
点评:本题考查集合间的相互包含关系及运算,应注意分类讨论方法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x|x2≤9},B={x|x2-5x-6<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州一模)若集合A={x|x2-2x<0},B={x|y=lg(x-1)},则A∩B为
{x|1<x<2}
{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2-|x|-6<0},B={x|
2x
≥1},求A∩CRB

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2+ax+1=0,x∈R},集合B={1,2},且A∪B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案