精英家教网 > 高中数学 > 题目详情
13.已知△ABC中,A,B,C所对的边分别为a,b,c,且a>c>b,且a,c,b成等差数列,|AB|=2,求点C的轨迹方程.

分析 运用等差数列的性质,再由椭圆的定义,即可得到轨迹方程,注意x<0.

解答 解:由于a>c,a,c,b成等差数列,c=|AB|=2,
则a+b=2c=4>|AB|=2,且a>c>b,
可设A,B在x轴上,由椭圆的定义,
可知顶点C的轨迹为椭圆的位于y轴左边的部分.
其长轴长为4,焦距为2,则短轴长为2$\sqrt{3}$.
则有顶点C的轨迹方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x<0).

点评 本题考查运用椭圆的定义球轨迹方程,考查等差数列的性质,考查运算能力,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知$cosA=\frac{1}{2}$,则sinA=(  )
A.$\frac{1}{2}$B.±$\frac{\sqrt{3}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.过圆外一点P向圆O作切线PA、PB及及割线PCD,过C作PA的平行线,分别交AB、AD与于E、F.求证:CE=EF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域
(1)f(x)=$\frac{7x+1}{2x-4}$;
(2)$\frac{1}{\sqrt{x}-5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程y=$\sqrt{36-{x}^{2}}$表示的曲线是(  )
A.一个圆B.两条射线C.半个圆D.一条射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\left\{\begin{array}{l}{-\frac{1}{2}|x-2|,x≥1}\\{(\frac{1}{2})^{x}-1,0<x<1}\\{\frac{1}{x-m}+1,x≤0}\end{array}\right.$.
(Ⅰ)若m=1,画出函数的简图,并指出函数的单调区间.
(Ⅱ)若函数y=f(x)的图象与直线y=m-1(m>0)有两个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若5555=8k+r(k,r为自然数),则r的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其他20台未感染病毒的计算机.现有10台计算机被第1轮病毒感染,问被第5轮病毒感染的计算机有多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α是三角形的内角,且$cosα=-\frac{3}{5}$,则tanα等于(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案