精英家教网 > 高中数学 > 题目详情
7.已知:f(x)=ax2-ax-2
(1)?x∈R,使f(x)≤0恒成立,求实数a的取值范围;
(2)?x∈R,使f(x)≤0成立,求实数a的取值范围.

分析 (1)根据一元二次不等式的性质进行求解即可.
(2)根据一元二次不等式的性质进行求解即可.

解答 解:(1)?x∈R,使f(x)≤0恒成立,
则等价为ax2-ax-2≤0恒成立,
若a=0,则不等式等价为-2≤0成立,
若a≠0,则$\left\{\begin{array}{l}{a<0}\\{△={a}^{2}+8a≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{a<0}\\{-8<a<0}\end{array}\right.$,
解得-8<a<0,综上-8<a≤0,
即实数a的取值范围是(-8,0];
(2)?x∈R,使f(x)≤0成立,
则①若a=0,则不等式等价为-2≤0成立,
②若a<0,则抛物线开口向下,不等式f(x)≤0成立,
③若a>0,则抛物线开口向上,则满足判别式△=a2+8a≥0,
即a≥0或a≤-8,
此时解得a>0,
综上a∈R,
即实数a的取值范围是(-∞,+∞).

点评 本题主要考查一元二次不等式的求解,根据一元二次函数的性质,结合判别式△是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知三角形ABC的顶点坐标分别为:A(-1,5),B(5,5),C(6,-2),求其外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合M={y|y=2x,x<-1},P={y|y=log2x,x≥1},则M∩P=(  )
A.$\{y|0<y<\frac{1}{2}\}$B.{y|0<y<1}C.$\{y|\frac{1}{2}<y<1\}$D.$\{y|0≤y<\frac{1}{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是偶函数又在(0,+∞)上单调递减的函数是(  )
A.y=x2+2B.y=|x|+1C.y=-|x|D.y=e|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,则$f(\frac{1}{3})+f(\frac{13}{6})$=$\frac{1}{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相切,则动圆圆心M的轨迹方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≤-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若n∈N*,则1+2+22+23+…+2n+1=(  )
A.A2n+1-1B.2n+2-1C.$\frac{(n+2)(1+{2}^{n+1})}{2}$D.$\frac{(n+1)(1+{2}^{n+1})}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.集合M是满足下列性质的函敖f(x)的全体;存在非零常数T,对任意X∈R,有f(x+T)=Tf(x)成立,已知f(x)=x,g(x)=a,(a>0且a≠1)则(  )
A.f(x)∈M且g(x)∈MB.f(x)∉M,g(x)∈MC.f(x)∈M,g(x)∉MD.f(x)∉M且g(x)∉M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x∈R,“x=1”是:“x-1=$\sqrt{x-1}$”的(  )
A.必要不充分条件B.充分不必要条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

同步练习册答案