精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式的定义域为(1,+∞)
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[m,m+1](m>1)上的最小值.

解:(1)函数f(x)=
∴f′(x)=
令f′(x)=<0?x<2,所以函数f(x)=在区间(1,2)上单调递减;
令f′(x)=>0?x>2,所以函数f(x)=在区间(2,+∞)上单调递增.
(2)①当m<2时,由于m>1,故m+1>2,故2∈[m,m+1]
∴函数f(x)=在区间(m,2)上单调递减
函数f(x)=在区间(2,m+1)上单调递增
∴函数f(x)的最小值为f(2)=e2
②当m≥2时,函数f(x)=在区间[m,m+1]上单调递增,
所以函数f(x)的最小值为f(m)=
综上,
分析:(1)直接求函数的导函数,利用两个函数商的求导法则,结合定义域(1,+∞),判断导函数正负即可;
(2)结合(1)所求函数的单调区间,对m分两种情况讨论,在给定区间上利用函数的研究函数单调性,求函数最值,注意端点函数值即可.
点评:本题考查导数的求法及其应用;分类讨论思想,关键熟练掌握两个函数商的求导法则,求最值是注意端点函数值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知函数f(x)=2x的反函数为f-1(x),则f-1(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3的切线的斜率等于1,则这样的切线有(  )
A、1条B、2条C、3条D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,求证:
cosα
sinα+sin3α
=
1+α2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2的图象在P(a,-a2)(a≠0)处的切线与两坐标轴所围成的三角形的面积为2,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1-|x|)则关于函数h(x)有下列命题:
①h(x)为图象关于y轴对称;
②h(x)是奇函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为
①④
①④
(注:将所有正确命题的序号都填上).

查看答案和解析>>

同步练习册答案