精英家教网 > 高中数学 > 题目详情
记关于x的不等式
x-ax+1
<0
的解集为P,不等式|x-1|≤3的解集为Q.
(1)若a=3,求P.
(2)若P⊆Q,求实数a的取值范围.
分析:(1)将
x-3
x+1
<0
转化成(x-3)(x+1)<0进行求解即可;
(2)求出集合Q,讨论a分别求出集合P,使P⊆Q,建立等量关系,求出参数a的范围,最后将符号条件的a求并集即可.
解答:解:(1)由
x-3
x+1
<0

转化成(x-3)(x+1)<0
解可得P={x|-1<x<3}.

(2)Q={x||x-1|≤3}={x|-2≤x≤4}.
当a>-1时,得P={x|-1<x<a},又P⊆Q,所以-1<a≤4,
当a<-1时,得P={x|a<x<-1},又P⊆Q,所以-2≤a<-1,
当a=-1时,得P=∅,满足P⊆Q,所以,a=-1符合题意.
综上,a的取值范围是[-2,4].
点评:本题主要考查了绝对值不等式的解法,以及集合的包含关系判断及应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记关于x的不等式
x-ax+1
<0
的解集为P,不等式|x-1|≤1的解集为Q.
(Ⅰ)若a=3,求P;
(Ⅱ)若Q⊆P,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记关于x的不等式|x-a|<2的解集为A,不等式
x-2x+1
>0
的解集为B.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记关于x的不等式
x-ax+1
>0
的解集为P,不等式|x-1|≤1的解集为Q,
(1)若a=3,求P∪Q.
(2)若Q⊆P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记关于x的不等式
x-ax+1
<0的解集为P,不等式|x-1|≤1的解集为Q.若Q⊆P,则正数a的取值范围
(2,+∞)
(2,+∞)

查看答案和解析>>

同步练习册答案